Rare Kaon Decays Milind Diwan Brookhaven National Laboratory June 7, 2005 Weak Interactions and Neutrinos 2005 Delphi, Greece ## **Historical Perspective** Kaon decays have a parallel history along with the development of the standard model. | Phase | Observation | BR sens | Physics | |--------------|---------------------------------|-----------------|---------------------| | Early | Long life | 1 | Strangeness | | | Decays of K^+ , K_L , K_S | 0.1 | Parity violation | | 1960s | Semileptonic | $> 10^{-3}$ | Meson Dynamics | | | Hadronic | $> 10^{-3}$ | CP violation | | 1970-80s | FCNC | $> 10^{-7}$ | GIM, Standard Model | | 1985-present | ϵ'/ϵ | | Direct CP | | | radiative decys | $\sim 10^{-8}$ | Low Energy QCD | | | Forbidden Searches | $\sim 10^{-11}$ | Limits on Non-SM | | Future | Precision | $\sim 10^{-13}$ | SM or New | Progress has been in phases partly driven by acceleractor and detector technology. New phase is about to begin. Focus of this talk: - $K_L/K_S \to \pi^0 l^+ l^- \ [l = e, \mu]$ - $K^+ \to \pi^+ \nu \bar{\nu}, K_L \to \pi^0 \nu \bar{\nu}$ ## Conclusions - Situation with K_L → π⁰l⁺l⁻ is getting less murky because of the measurements from NA48 of K_S → π⁰l⁺l⁻. Is it good enough for a dedicated experiment? - Theory of $K^+ \to \pi^+ \nu \bar{\nu}$ ($\sim 10^{-10}$) and $K_L \to \pi^0 \nu \bar{\nu}$ ($\sim 3 \times 10^{-11}$) is very robust. New understanding of how $K_L \to \pi^0 \nu \bar{\nu}$ has sensitivity to new physics. (Bryman, Buras, Isidori, Littenberg, TUM-HEP-583/05) - JPARC has many LOI for rare decays. 2×10^{14} protons/3.4sec Pencil beam for $K_L \to \pi^0 \nu \bar{\nu}$. Stopping beam for $K^+ \to \pi^+ \nu \bar{\nu}$. - $K^+ \to \pi^+ \nu \bar{\nu}$: NA48/3. Perhaps incorporate some CKM features: ring imaging, separated beam. - $K^+\pi^0\nu\bar{\nu}$: KOPIO waiting for funding.